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A B S T R A C T   

Assessing the risk of malaria local transmission and re-introduction is crucial for the preparation and imple-
mentation of an effective elimination campaign and the prevention of malaria re-introduction in China. 
Therefore, this review aims to evaluate the risk factors for malaria local transmission and re-introduction in 
China over the period of pre-elimination to elimination. Data were obtained from six databases searched for 
studies that assessed malaria local transmission risk before malaria elimination and re-introduction risk after the 
achievement of malaria elimination in China since the launch of the NMEP in 2010, employing the keywords 
"malaria" AND ("transmission" OR "re-introduction") and their synonyms. A total of 8,124 articles were screened 
and 53 articles describing 55 malaria risk assessment models in China from 2010 to 2023, including 40 models 
assessing malaria local transmission risk (72.7%) and 15 models assessing malaria re-introduction risk (27.3%). 
Factors incorporated in the 55 models were extracted and classified into six categories, including environmental 
and meteorological factors (39/55, 70.9%), historical epidemiology (35/55, 63.6%), vectorial factors (32/55, 
58.2%), socio-demographic information (15/26, 53.8%), factors related to surveillance and response capacity 
(18/55, 32.7%), and population migration aspects (13/55, 23.6%). Environmental and meteorological factors as 
well as vectorial factors were most commonly incorporated in models assessing malaria local transmission risk 
(29/40, 72.5% and 21/40, 52.5%) and re-introduction risk (10/15, 66.7% and 11/15, 73.3%). Factors related to 
surveillance and response capacity and population migration were also important in malaria re-introduction risk 
models (9/15, 60%, and 6/15, 40.0%). A total of 18 models (18/55, 32.7%) reported the modeling performance. 
Only six models were validated internally and five models were validated externally. Of 53 incorporated studies, 
45 studies had a quality assessment score of seven and above. Environmental and meteorological factors as well 
as vectorial factors play a significant role in malaria local transmission and re-introduction risk assessment. The 
factors related to surveillance and response capacity and population migration are more important in assessing 
malaria re-introduction risk. The internal and external validation of the existing models needs to be strengthened 
in future studies.   

1. Introduction 

Significant progress has been achieved on the road to global malaria 

eradication over the past decades. According to the World Malaria Report 
2022, 25 countries that were malaria endemic in 2000 have achieved 
three consecutive years of zero indigenous malaria cases, and 12 of these 
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countries were certified malaria-free by the World Health Organization 
(WHO) between 2000 and 2021 (WHO, 2022b). Despite the fact that 
malaria elimination efforts were largely be affected by the COVID-19 
pandemic since 2020, two countries achieved this goal. Of which, 
China was certified as a malaria-free country by the WHO on June 30, 
2021 (WHO, 2021a, 2022b). 

In 2010 and in response to a global malaria eradication initiative 
proposed at the UN Millennium Development Goals high-level meeting, 
the Chinese government launched the National Malaria Elimination 
Program (NMEP) and planned to achieve malaria elimination by 2020 
(Cao et al., 2021). Malaria transmission risk assessment has played an 
important role in implementing an effective malaria elimination pro-
gram in China. The malaria local transmission risk was assessed and 
stratified at a city- or even county-level to guide the NMEP. With the 
initiation of the malaria elimination program, a nationwide malaria 
transmission risk prediction model was established in China by incor-
porating temperature, relative humidity, and rainfall factors (Yang 
et al., 2010). According to the model, malaria local transmission risk in 
China was classified into four strata, namely non-endemic, spor-
adic-endemic, hypo-endemic, and meso-endemic, of which the latter 
two have been particularly focused on in the last mile of elimination 
(Yang et al., 2010). Later, Zhou et al. innovatively assessed the malaria 
local transmission risk by incorporating the malaria transmission risk 
index during the pre-elimination phase in China. Based on the assess-
ment, four types of risk areas were categorized among 2,147 counties in 
24 endemic provinces in China, including super-high risk areas, 
high-risk areas, moderate risk areas, and low risk areas (Zhou et al., 
2014). Modeling the transmission risk provided a practical tool to 
stratify the malaria transmission risk and implement an effective elim-
ination campaign in China. 

Since China was certified as a malaria-free country in 2021, 
strengthening the malaria surveillance and response system by assessing 
the risk of malaria re-introduction became a particularly important 
intervention to sustain the malaria elimination success (Cao et al., 2022; 
Lu et al., 2022b; Lu et al., 2016). Besides constructing malaria 
re-introduction risk assessment models using the Delphi method, 
scholars are developing the malaria re-introduction risk prediction 
model by adopting machine learning techniques and by incorporating 
multiple risk factors (Kamana et al., 2022; Lan et al., 2022; Li et al., 
2022; Li et al., 2021a; Liu et al., 2023; Mo et al., 2021; Wang et al., 
2016). The main objective of this study is to determine the lessons 
gained in modeling malaria risk from pre-elimination to elimination 
stage in China, which are expected to benefit malaria-eliminating 
countries globally. 

2. Methods 

This study followed Preferred Reporting Items for Systematic Re-
views and Meta-Analyses (PRISMA) statement guidelines (Page et al., 
2021). The protocol of this study was registered on the international 
prospective register of systematic reviews database 
(CRD42023415657). 

2.1. Inclusion and exclusion criteria 

Studies that assessed malaria local transmission or re-introduction 
risk in China since 2010 were incorporated. Whether the risk assess-
ment was conducted for malaria local transmission or re-introduction 
was defined based together on the statement by the authors and a 
comprehensive analysis of the malaria epidemiological context of the 
study (e.g., the number of reported cases in the study location). Malaria 
re-introduction here refers to the occurrence of introduced cases (cases 
of the first-generation transmission that are epidemiological linked to a 
confirmed imported case) in a country or area where the disease had 
previously been eliminated (WHO, 2021b). If multiple articles described 
the same assessment model, it was recorded only once, and all relevant 

information was extracted from these articles. 

2.2. Search strategy and screening 

A comprehensive literature search was performed both in English 
databases (PubMed, Web of Science, Cochrane Library), and in Chinese 
databases including China National Knowledge Infrastructure (CNKI), 
China Science and Technology Journal Database (VIP), and Wanfang 
database by using the following keywords “malaria”, “Malaria, Vivax”, 
“Malaria, Falciparum”, “transmission”, “re-introduction”, “re-establish-
ment”, “re-emergence”, “resurgence” and “China” (supplementary ma-
terial appendix 1). All searches were conducted in April 2023 and 
covered the databases between 2010 and 2023. After removing dupli-
cate entries, two reviewers (LYC and GYL) independently screened the 
identified titles and abstracts for eligibility. Subsequently, the full-text 
articles were screened for inclusion, and any disagreements were 
resolved through consensus. The citations of relevant articles were also 
manually screened to identify additional studies. 

2.3. Data extraction and synthesis 

The data extraction was carried out independently by two in-
vestigators (LYC and GYL). Information extracted including the first 
author, the year of publication, the study site, the source of data, the 
year of the reported last indigenous case in the study area, the purpose of 
models (local transmission or re-introduction risk assessment), the 
methodology of models, variables incorporated in the established 
models, the performance of the model, and the validity of the models. 

2.4. Quality assessment 

The risk of bias in incorporated studies was assessed using an 
adapted Newcastle-Ottawa Scale (aNOS) by the two independent re-
viewers (LYC and GYL). The aNOS scale incorporates the assessment of 
the sample selection, comparability, and outcomes. Scores on this in-
strument range from 1 to 10, with higher scores indicating higher 
quality (Ottawa Hospital Research Institute, 2021). Considering the 
quality of the reported models was reflected by the model performance, 
we adapted the domain of “comparability” into “model performance”. 
The domain “model performance” was assessed according to the existing 
tool used in evaluating prediction models in clinical settings, titled 
“Prediction model Risk of Bias Assessment Tool (PROBAST)” (Wolff 
et al., 2019) (Supplementary Material Appendix 2). 

3. Results 

A total of 6,339 articles were identified after the electronic searches 
of six databases and removal of duplicate studies. The titles and abstracts 
were screened and 251 articles were subjected to full-text review. Of 
these, 198 were excluded after reading full texts with various reasons. 
Finally, 53 articles were incorporated into the analysis (Fig. 1). 

3.1. General characteristics of the incorporated studies 

The general characteristics of the 53 articles reporting 55 malaria 
risk prediction or assessment models in China from 2010 to 2023 were 
summarized in Table 1, including 40 models in malaria local trans-
mission risk (72.7%) and 15 models in malaria re-introduction risk 
(27.3%). One-third of the incorporated studies (36/53, 67.9%) were 
published in Chinese. Geographically speaking, of 55 incorporated 
models, seven models were established at a national level and 43 were at 
a provincial level, including 16 were developed for Yunnan province, 14 
for Anhui province, six for Henan province, six for Hainan province, four 
for Hubei province, two for Hunan, Fujian and Taiwan province 
respectively, and one for Jiangxi and Shandong province. 

Of the 55 incorporated models, the majority were developed based 
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on routine surveillance data (35/55, 63.6%). In terms of methodology, 
22 models (22/55, 40%) were developed by statistical method, followed 
by mathematical methods (16/55, 29.1%), Delphi method (12/55, 
21.8%), and machine learning (5/55, 9.1%). Of four studies assessing 
the malaria re-introduction risk, three models have used the Delphi 
method. 

3.2. Variables incorporated in malaria risk assessment model 

Variables incorporated in the 55 models were identified and 

classified into six categories, namely environmental and meteorological 
factors, historical epidemiology, vectorial factors, surveillance and 
response-related factors and population migration. 

3.2.1. Environmental and meteorological factors 
Environmental and meteorological factors were considered in 40 

models and finally incorporated in 38 models (38/55, 69.1%). Rainfall 
(32/39, 82.1%), temperature (29/39, 74.4%), and relative humidity 
(15/39, 38.5%) were most frequently incorporated in these models. 
Remote sensing data was as defined as predictors only for malaria local 

Fig. 1. A summary flow of the study selection process  
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transmission risk, including normalized difference vegetation index 
(NDVI) (4/39, 10.3%), land surface temperature (3/39, 7.7%), evapo-
transpiration (2/39, 5.1%), slope (2/39, 5.1%), water density index (1/ 
39, 2.6%), and drainage density (1/39, 2.6%). Extreme weather events 
such as Multivariate ENSO Index were identified in two prediction 
models (Gao et al., 2012). Land use was studied in 3 models, but only 
one model incorporated it. Topography, wind velocity, and barometric 
pressure were identified in one model. 

3.2.2. Historical epidemiology 
Historical epidemiology was incorporated in 35 models (35/55, 

63.6%). The most commonly incorporated was the number of malaria 
cases (34/35, 97.1%). Of which, 21 models incorporated both the 
number of indigenous and imported cases (21/34, 61.8%), and 12 
models only incorporated the number of imported cases (12/34, 35.3%). 
Six models incorporated the malaria species and historical epidemic 
strength separately. 

3.2.3. Vectorial factors 
Vectorial factors were incorporated in 32 models (32/55, 58.2%). 

The most commonly incorporated vectorial factors were vector suit-
ability (a combination of Anopheles species, density, number and bio-
logical characteristics) (26/32, 81.3%), human-vector contact (biting 
rate and human blood index) (15/32, 46.9%) and vectorial capacity, 
which was defined by a formula including the parasite’s extrinsic in-
cubation period, the ratio of mosquitoes to humans, mosquito survival 
through one day and human biting rates (Brady et al., 2016) (9/32, 
28.1%). 

3.2.4. Socio-demographic information 
Socio-demographic information was incorporated in 26 models (26/ 

55, 47.3%). Population structure (the number of populations, popula-
tion density, fertility or mortality of population, male population, 
occupation) (15/26, 53.8%) was the most commonly used indicator in 
the domain. Moreover, economic level (GDP, industrial structure, eco-
nomic growth rate, and income per capita) was incorporated in seven 
models (7/26, 26.9%), and the quantity of medical and health services 
(number of medical institutions and number of practicing physicians) 
were incorporated in two models (2/26, 7.7%). 

3.2.5. Surveillance and response-related factors 
Surveillance and response-related factors were incorporated in 18 

models (18/55, 32.7%). Construction of a malaria prevention and con-
trol team (establishment of malaria working group, number of malaria 
staff, implementation of the malaria training program, number of mi-
croscopists, and number of microscopy stations, etc.) (10/18, 55.6%). 
and awareness and behavior of malaria prevention and health seeking, 
(10/18, 55.6%) were the most common predictors. This was followed by 
financial support (8/18, 44.4%) and treatment capacity (8/18, 44.4%). 
Surveillance and diagnostic capacity were incorporated in five models 
(5/18, 27.8%). Multi-sectorial prevention and control mechanism (4/ 
18, 22.2%), stock of anti-malarial drugs and other equipment (4/18, 
22.2%), government’s attention (3/18, 16.7%), implementation of “1-3- 
7” malaria surveillance and response strategy (3/18, 16.7%) were only 
incorporated in malaria re-introduction risk assessment models. 

3.2.6. Population migration 
Population migration was incorporated as a predictor in 13 models 

(13/55, 23.6%). Of these, half of the models assessed malaria re- 
introduction risk (7/14, 50%). The number of migrants from malaria- 
endemic regions was the most common indicator used in presenting 
the population migration in assessing the malaria risk (14/14, 100%). 
Moreover, the length of stay in the malaria endemic area and the 
number of trips were incorporated in two models (2/14,14.3%) 
respectively, and the original country of the migrated population was 
incorporated in one model (1/14, 7.1%). 

3.3. Shifting of the variables used in assessing malaria local transmission 
risk to malaria re-introduction risk 

Among the 40 models in assessing malaria local transmission risk, 
the most commonly incorporated variables were environmental and 
meteorological factors (29/40, 72.5%), followed by historical epidemi-
ology (25/40, 62.5%), demographic and social statistic information (22/ 
40, 55%), and vectorial factors (21/40, 52.5%). Surveillance and 
response-related factors (9/40, 22.5%). and population migration (7/ 
40, 17.5%) were less frequently incorporated in the models. 

Differently, among the 15 models in assessing malaria re- 
introduction risk, the vectorial factors (11/15, 73.3%) were the most 
commonly incorporated. Moreover, it is important to notice that 60% of 
the models for assessing malaria re-introduction risk incorporated sur-
veillance and response-related factors (9/15), which is significantly 
higher compared with local transmission risk prediction models. Simi-
larly, population migration (6/15, 40.0%) was more frequently incor-
porated in malaria re-introduction risk models than in local transmission 
risk models. Demographic and social statistic information was only 
incorporated in four models assessing malaria re-introduction (4/15, 
26.7%). 

3.4. Performance and validation of the malaria transmission and re- 
introduction models 

Of the 55 incorporated models, only 18 models reported their per-
formance. The commonly evaluated metrics include Akaike’s informa-
tion criterion (7/18, 38.9%), mean absolute error (6/18, 33.3%), Root 
mean square error (5/18, 27.8%), and R square (5/18, 27.7%). 

Of the 55 incorporated models, six were validated internally and five 
were validated externally. Only four models from one study were vali-
dated both internally and externally (Kamana et al., 2022). The methods 
used in validation include traditional methods, such as splitting the data 
into training and validation sets according to a defined proportion 
(Hundessa et al., 2018a; Shi et al., 2020). In addition, some models were 
validated by splitting data following a time series to ensure that the 
validation set and test set results are more realistic (Kamana et al., 
2022). For example, four machine learning models for malaria 
re-introduction (by XGBoost model, LSTM model, GRU model, and 
LSTMSeq2Seq model) were established by data collected from 
2004-2012, validated by data from 2013-2014, and further tested by 
data from 2015-2016. 

3.5. Quality assessment 

Scores of the aNOS scale of 53 incorporated studies ranged from five 
to ten. Of these, 45 studies scored seven and above as the models were 
established based on the surveillance data, with adequate sample size, 
good representation, and data quality. The missing scores in the quality 
assessment are mainly due to the lack of measurement of the models’ 
performance (Supplementary Material Appendix 3). 

4. Discussion 

This study analyzed and summarized the establishment and findings 
of 40 malaria local transmission risk models and 15 malaria re- 
introduction risk models established in China from the pre-elimination 
to elimination phase. A total of one hundred factors incorporated into 
the risk assessment models were identified and further classified into six 
categories, including environmental and meteorological factors, histor-
ical epidemiological factors, vectorial factors, socio-demographic in-
formation, surveillance and response-related factors, and population 
migration aspects. Factors related to surveillance and response capacity 
and population migration are more commonly incorporated in malaria 
re-introduction risk assessment models. Although existing models 
generally lack strong internal or external validation, the predictors 
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considered, the methods used, and the lessons gained in establishing the 
risk assessment models from China over the past decade may benefit 
other countries aiming for malaria elimination and prevention of ma-
laria re-introduction. 

Nearly one-third of the included models were established in Yunnan 
Province, including 15 malaria local transmission risk assessment 
models and 1 malaria re-introduction risk assessment model. Yunnan 
Province has been long-term regarded as the last mile of the malaria 
elimination program in China (Li et al., 2021b; Yang et al., 2021). It’s 
climate and natural conditions are suitable for vector breeding and 
Plasmodium development, and thus malaria outbreaks and epidemics 
were frequently reported in this province (Liu et al., 2018; Xu et al., 
2016; Yang et al., 2017). Moreover, Yunnan Province shares long porous 
international borders with malaria-endemic countries, such as Lao 
People’s Democratic Republic, Myanmar, and Vietnam (Yang et al., 
2021). Therefore, migrants from endemic countries into Yunnan Prov-
ince are at high risk of carrying malaria-infected individuals and can 
easily reintroduce malaria transmission in China’s border areas (Liu 
et al., 2022; Yang et al., 2021). In addition, there was a concern that the 
risk of border-spill malaria due to the infected Anopheline mosquitoes 
may cause malaria outbreaks in Yunnan Province (Lin et al., 2022). 
Continuing to strengthen the public health response capacity and ma-
laria surveillance capacity, particularly in border areas, is crucial to 
maintaining malaria elimination success. 

All malaria local transmission risk models established in the Huang- 
Huai River region only incorporated environmental and climatic factors 
(n=14) (Lin et al., 2022; Liu et al., 2022; Liu et al., 2018; Xu et al., 2016; 
Yang et al., 2017; Yang et al., 2021; Zhou et al., 2010). The Huang-Huai 
River region is situated in central China, bordered by the Yellow River to 
the north and the Huaihe River to the south, covering 116 counties in 
four provinces of Henan, Anhui, Shandong, and Jiangsu (Zhang et al., 
2014). This region experiences a diverse range of climates, including 
arid, semi-arid, semi-humid, and humid zones, characterized by com-
plex weather patterns and distinct continental monsoonal features 
(Guan et al., 2021). Due to global climate change, this area occasionally 
experiences abrupt alternations between droughts and floods (Zhang 
et al., 2021). In addition, the Huang-Huai River region serves as a major 
population center in the northern part of the country and plays a crucial 
role in food production, accounting for nearly 35% of the population and 
34% of the cultivated land (Ren et al., 2023). Under the context of global 
climate change, drought-flood abrupt alternation occurs from time to 
time in this region (Ren et al., 2023). Historically, a malaria epidemic 
occurred in this region in the 1960s, and the reason is largely attributed 
to the increase of breeding sites, as dry fields in the region were 
generally converted into paddy fields (Li, 2013). In the early 21st cen-
tury, malaria re-emergence, and outbreaks again occurred in this region, 
which was attributed to the high vectorial capacity of Anopheles sinensis 
(Zheng et al., 2008; Zhou et al., 2010). These epidemic histories explain 
well a large proportion of environmental and climatic factors that were 
incorporated in the risk assessment models in this region, including 
classical ones (e.g., temperature, humidity, and rainfall) and rare ones 
such as NDVI and land use, etc. (Gao et al., 2012; Liu et al., 2021; Zhai 
et al., 2018; Zhou et al., 2010). 

Although one local transmission risk assessment model and one re- 
introduction risk assessment model excluded environmental and mete-
orological factors, more than half of both local transmission risk 
assessment models and re-introduction risk assessment models incor-
porated them (Hu, 2017; Lei et al., 2019). This is consistent with the 
majority of findings that environmental and meteorological factors are 
closely linked to vectorial activities (Castro, 2017; Lu et al., 2023). In 
particular, rainfall creates many suitable sites for mosquitoes to breed 
and temperature accelerates the development of Plasmodium, which are 
both the major drivers of malaria transmission (Gething et al., 2011; 
Paaijmans et al., 2007; Ren et al., 2016; Zhou et al., 2010). Other 
environmental and meteorological factors such as altitude, topography, 
and extreme weather events were less frequently incorporated in the risk 

assessment models, which may be due to the inherent complexity of the 
environment and the variability of environments in different regions 
(Bødker et al., 2006; Cao et al., 2023; Ewnetu and Lemma, 2022; Kovats 
et al., 2003; Stresman, 2010; van de Straat et al., 2022). Moreover, 
environmental remote sensing data was gradually being used in 
assessing the risk of transmission of malaria in more recent studies, such 
as NDVI, land surface temperature, evapotranspiration, water density 
index et al. In this case, epidemiologists and geographers should be in 
collaboration from the onset of a study so that the remote sensing data 
are fully applicable to the needs of public health concerns (Herbreteau 
et al., 2007). 

Surveillance and response capacity play a crucial role in reducing the 
burden of malaria, eliminating the disease, and preventing its re- 
introduction. Our study demonstrated that surveillance and response 
factors are given more weight in assessing malaria re-introduction risk 
than in transmission risk. However, the factors related to malaria sur-
veillance and response capacity incorporated in models were inconsis-
tent. WHO has developed a Malaria Surveillance Assessment Toolkit, 
which can be used to track the progress towards surveillance system 
strengthening (WHO, 2022a). But the tool maybe not fully applicable to 
the malaria surveillance and response system of China. Thus, there is a 
need to develop a standard tool to regularly assess malaria surveillance 
and response capacity in China. 

Only about one-fifth of malaria local transmission risk assessment 
models and two-fifths of re-introduction risk assessment models incor-
porated the factors related to population migration. The main reason for 
this is the persistent challenge of accessing information on migrant 
populations. Firstly, migrant population is excluded from public man-
agement and health services, especially irregular migrants (Guan, 
2020). Secondly, migrant worker management is not totally standard-
ized by labor export organizations or companies (Qian et al., 2014). 
Thirdly, the origin country and length of stay of migrated population 
may be imprecise because they often visit multiple countries over a 
period of time (Qian et al., 2014; Wang et al., 2012). Fourthly, migrant 
population may have a recall bias on preventive or high-risk behaviors 
during their long-term travel. So far, many efforts have been conducted 
to characterize population migration patterns and the translation of 
these into parasite dispersion (Pindolia et al., 2012). For example, 
scholars replaced the number of migrant populations with various data 
sets, such as flight data, census data, health survey data, GPS records or 
mobile phone records (Kugler and Fitch, 2018; Schick et al., 2008; 
Vazquez-Prokopec et al., 2009). Moreover, scholars investigated the 
demographics of human movement and migration patterns based on 
population censuses and sampling surveys (Chen, 2018; Lu et al., 2022a; 
Pindolia et al., 2013). 

Only few models in our study have been validated internally or 
externally, mainly due to a lack of adequate and high-quality validation 
datasets. In terms of the risk factors incorporated, the models that were 
validated all incorporated environmental and vectorial factors, while 
none of the models that incorporated factors related to surveillance and 
response capacity as well as migration population were validated, which 
could be explained by the difficulties in collecting such data (Gao, 2012; 
Hundessa et al., 2018b; Kamana et al., 2022; Shi et al., 2020). Finding a 
suitable separate dataset for outbreaks and epidemics of infectious dis-
eases can also be challenging (Walters et al., 2018). Additionally, 
transmission potential of pathogens may have evolved significantly over 
time, that those datasets which do exist may not be appropriate for 
comparison (Ding et al., 2021). Access to surveillance data or 
multi-source public data and big-data mining can vastly facilitate model 
validation (Bansal et al., 2016). When validated datasets are indeed 
lacking, researchers should try alternative methods to illustrate the 
stability and accuracy of model predictions, such as by comparing 
multiple models, or to make it as clear as possible why validation cannot 
be performed (Walters et al., 2018). 
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5. Implications for public health practice 

Based on the 40 malaria transmission risk models and 15 malaria re- 
introduction risk assessment models incorporated in this study, we 
recommend that researchers incorporate the following factors for ma-
laria risk assessment: environmental and meteorological factors, his-
torical epidemiology, vectorial factors, population migration, as well as 
surveillance and response related factors. Although datasets of factors 
related to surveillance and response capacity as well as population 
migration are challenging to obtain, they play an irreplaceable role in 
malaria risk assessment, particularly for malaria re-introduction risk 
assessment. Malaria risk assessment models established on the basis of 
Delphi method can be a useful tool for stratifying malaria risk areas in 
countries that are in pre-elimination or elimination phase of malaria. To 
make full use of the experts’ knowledge and practical experience while 
ensuring that the results of risk assessment are objective and scientific, 
Delphi method can be combined with objective weighting methods, such 
as analytic hierarchy process and entropy weighting. Given the rapid 
and constant evolution of infectious disease models, a standard tool for 
evaluating the risk of bias in the modeling studies of infectious diseases 
should be developed. 

6. Limitations 

This is the first study to summarize the efforts made in predicting or 
assessing malaria risk in China since the initiation of the Malaria Elim-
ination Program in 2010. However, there are some limitations in this 
study. Firstly, we were unable to conduct a meta-analysis for the factors 
incorporated in the models because incomplete information on the 
incorporated studies. Moreover, we used an aNOS scale for quality 
assessment because the PROBAST scale generally applies to clinical 
prediction model studies but not to infectious disease prediction models, 
which may have resulted in higher quality scores. 

7. Conclusion 

China has made considerable efforts in assessing malaria local 
transmission and re-introduction risk. Both malaria local transmission 
and re-introduction risk assessment models were established based on 
environmental and meteorological factors, historical epidemiology, 
vectorial factors, demographic and social statistic information, surveil-
lance and response-related factors, and population migration. Factors 
related to surveillance and response capacity as well as population 
migration are more important in malaria re-introduction risk assessment 
models than in malaria local transmission risk assessment models. But it 
is undeniable that environmental and meteorological factors and 
vectorial factors play a significant role in both malaria local trans-
mission and re-introduction risk assessment models. Existing models for 
malaria local transmission and re-introduction risk lack general appli-
cability due to the lack of internal and external validation. There is still a 
lack of a quality assessment tool applicable to infectious disease models. 
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